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Earlier models of fire plumes based on simple entrainment laws and neglecting 
dynamic pressure have failed to produce the relatively shallow inflow over the 
fire perimeter known as fire wind. This inflow is of prime importance in fire 
modelling as it normally provides much of the air required for combustion; for 
this reason we have carried out a very simple numerical experiment on two- 
dimensional natural convection above a strip heat source with the intention of 
simulating those aspects of fire behaviour involved in the generation of fire wind 
without attempting the formidably difficult task of detailed fire modelling. Our 
results show clearly that fire wind is driven by the dynamic pressure field which 
is generated by and intimately related to the region of strong buoyant accelera- 
tion close above the ground boundary. Throughout our parametric range there is 
a concentrated region of large horizontal pressure gradient in a neighbourhood 
above the perimeter of the fire, and elsewhere the pressure gradients play a 
lesser role. 

We have investigated also the dependence of our solution on the boundary 
conditions, particularly those at  the lateral boundary, where we have imposed 
as little constraint as possible on flow into and out of the computational region. 
Considerable effects even of such weak side-boundary constraints persist 
throughout the solution region at  moderate values of the pseudo-Rayleigh 
number (based on eddy diffusivities), but these can be limited by an appropriate 
choice of the thermal conditions and kept within acceptable bounds at  large 
pseudo-Rayleigh numbers. Similar effects of boundary conditions are likely to 
appear in other mesoscale convectively driven atmospheric models, including 
sea breezes, katabatic winds and locally concentrated convective columns. 

1. Introduction 
Previous attempts to model the air-flow induced by fires have assumed that 

the convective column (or 'fire plume') produced by a fire rises almost vertically 
and widens only slowly with height, and that pressure fields play a negligible 
dynamical role within the column (see, for example, Murgai & Emmons 1960; 
Lee & Emmons 1961; Nielson & Tao 1965; Morton 1965, 1967; Smith 1969; 
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Steward 1970). These assumptions have enabled the use of simple plume models, 
either in direct form, taking temperature variations as relatively small for 
regions well above the combustion zone, or in modified form to take some account 
of the much larger changes in temperature near the fire. Such models are valid 
only within the turbulent fire plume and are broadly consistent with a weak 
‘entraining’ external flow like that of a line sink having strength decreasing 
with height and centred on the plume axis. This type of approach is based on 
weak dynamical interaction between the fire plume and its environment and 
may be satisfactory for fire plumes at appreciable heights above fires of small 
diameter, but cannot be extended to the neighbourhood of fire sources at the 
ground. Thus the earlier fire-plume models predict a relatively gentle entrain- 
ment at all heights and fail to explain the more concentrated inflow or ‘fire wind’ 
which is observed to blow inwards across the perimeter of the fire and which 
increases in intensity and extent as the fire size and strength increase. This is 
scarcely surprising as the region within perhaps a source diameter of the ground 
is one of strong interaction of the buoyant acceleration and the ground boundary, 
in which the dynamic pressure field must play a role and will produce strong 
coupling between the fire zone and its environment. It follows that the traditional 
plume models for fire columns cannot apply near a fire at ground level and should 
not be expected to predict the observed fire wind; and as the fire wind carries in 
most of the oxygen required for combustion, such models have serious deficiencies 
when applied to the combustion zone of a fire. 

The great advantage of the earlier models, which apply to slowly spreading 
fire plumes well above their fire sources, is that asymptotic solutions of a semi- 
analytic form requiring relatively little computation are available. In  the com- 
bustion zone and close above it the analytic difficulties are formidable, and even 
when most of the complications introduced by combustion are ignored there 
seems to be little chance of obtaining analytic solutions, even to integrated forms 
of the dynamical equations. In  this region it appears probable that solutions will 
be obtained only by numerical computation over the field of interest, and in this 
case the problem is further complicated by the need to restrict the solution to 
a finite computational region, and to choose physically meaningful boundary 
conditions on the velocity and temperature fields that do not overconstrain the 
motion above the fire, especially that over the edges of the fire. Our interest is in 
unconfined fires in the atmosphere, and a t  least in the simpler cases these are free 
from lateral boundary constraint. Thus we must select lateral boundary condi- 
tions that can be shown to produce little constraint on motion in the fire zone, 
and yet can be applied within a relatively small distance of the fire so that we 
are not forced to use an unduly large coniputatioiial region only sparsely covered 
with grid points. This is a major problem common to the modelling of a range of 
mesoscale atmospheric flows, in which the vertical extent of the motion is limited 
by ambient stratification or by an inversion, and the local flow is produced by 
buoyancy or other internal forces. It is important in the study of sea breezes 
and katabatic winds, and also in flows involving concentrated vortices, such as 
tornadoes, where the force field is due to rotation. Someof our results are relevant 
in these other flows. They show that overconstraint of motion a t  the lateral 
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boundary of flows involving buoyancy can produce significant changes in the 
motion and temperature fields far from the boundaries, and that the assumption 
of rigid-wall lateral boundary conditions is acceptable only in cases where it has 
been demonstrated that the overconstraint is unimportant. 

In this paper we describe an attempt to simulate those aspects of fire behaviour 
involved in the generation of fire wind through a numerical study of two- 
dimensional natural convection above a horizontal strip source of heat, which 
forms part of the base of a rectangular computational region large in width and 
height compared with the half-width of the source. Boundary conditions are 
chosen to simulate a buoyant upflow of hot air above the source with lateral 
outflow (or ‘venting’) under an inversion a t  a specified height, and with com- 
pensating inflow across the lower parts of the side boundary. Such inversions are 
a common feature of the environment of a large fire; and although a large fire 
may actually produce some local modification of inversion height, this effect will 
seldom be big enough during the relatively short duration of the fire to cause 
significant flow changes near the fire source itself. We have allowed only modest 
temperature variations, so that we do not attempt to model an actual fire but 
only to simulate the broad features of strong buoyant acceleration above a hori- 
zontal boundary. Thus variations in density are everywhere relatively small, so 
that their effect is manifest only through the buoyancy forces without changes in 
fluid mass or inertia per unit volume. Under these conditions, conservation of 
mass and volume are equivalent to first order, acoustic waves are absent and 
gravity waves give little trouble because of the fixed inversion height. A simplified 
form of Navier-Stokes equations can as a result be used, taking reasonable 
account of the dynamics and allowing for both vertical and horizontal 
accelerations. 

The choice of boundary conditions on the lateral boundary is more critical, as 
any undue constraint on free inflow of ambient air or outflow of fire-heated air 
may produce a significant distortion of both the flow field and the dynamic 
pressure field throughout the computational region. We have assumed zero 
vertical velocity and local continuity of mass flow; and we have compared the 
solutions for two thermal conditions: (i) local continuity of heat flux in the out- 
flow and specified ambient temperature in the inflow, and (ii) local continuity 
of heat flux in both outflow and inflow. 

A particular realization of the numerical solution may be characterized by 
a pseudo-Rayleigh number based on the excess temperature and half-width of 
the source and on the assumed turbulent diffusivities, and also by the two aspect 
ratios HIL  and HIl, inversion height over width of the computational region and 
inversion height over source half-width, respectively. In  developing the numerical 
solutions, we shall explore ranges of values of these parameters in order to show 
that the solution in the neighbourhood of the fire is largely independent of the 
parameter values provided that they are chosen in suitable ranges. 

1-2 
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2. The model 
2.1. The equations of motion 

Consider two-dimensional motion relative to rectangular axes (2, y) with x hori- 
zontal and y vertical. The dependent variables include the velocity u, with 
components (u, v), and the density p, temperature T and dynamic pressure p of 
the air. The equations of motion are, without approximation, 

pDu/Dt = - V p  + (p - P O )  g + KPV'U, ( 1 )  
Dp/Dt = -pV. U ,  DTIDt = KV'T, (2), (3) 

where K is a turbulent eddy diffusivity, presumed constant and equal in value 
for both momentum and heat, g = (0, - g )  is the acceleration due to gravity and 
t the time. 

We assume that the perfect gas law holds and that density changes are associ- 
ated primarily with temperature changes. Hence the equation of state assumes 
the simplified form 

where a subscript zero denotes a constant reference value, being in this case the 
environmental value at  time t = 0. We have used potential temperatures and 
densities to take reasonable account of hydrostatic changes in pressure. 

With the Boussinesq approximation, the momentum and continuity equations 

PT = POTO, (4) 

simplify to 
( 5 )  

and v.u = 0, (6) 

using (4) to express the buoyancy term of ( I )  in terms of temperature. 
Equations (3), ( 5 )  and (6) form a closed set and may be used to determine the 

pressure, temperature and velocity fields given suitable initial and boundary 
conditions. 

2.2. Initial and boundary conditions 
The heat source is taken along the portion - 1 < x < 1 of the level ground y = 0 
and has a prescribed temperature T, in excess of the initial ambient temperature 
To of the fluid, and the maintained outer ground temperature, also To. The flow 
is confined to the region y > 0 and is symmetrical about x = 0. Accordingly, the 
computations are performed in the half-region D = ( (x ,  y)10 < x < L, 0 < y < H }  
with 1 < min ( H ,  L) ,  subject to the initial conditions 

u ( x ,  y) = 0, T ( x ,  y) = To throughout the region at  t = 0; 

and the boundary conditions 

4 0 ,  y), vJ0, y), T,(O, y) = 0 on 0 6 y < H ,  
u(x,  O),  v(x,  0) = 0 on 0 6 x < L ,  

{; T(x,O) = 
on O < x < l ,  
on l < x < L ,  

on 0 < y < h(t), u(L, y) < 6, v(L,  y) = 0 
T(L, y) = To or T,(L, y) = 0 



D 

Role of dynamic pressure in generating $re wind 

1 r = O  I 
; I ,  I 

I 

h ( r )  I 
I 
I 
I 

4 I 
I 
I 
I 

0 T=T, I T=T, L 
u=o. o=o 

5 

0 
0- 

; II 
3 

0- p 
A\ 
v c 

0 

X 

FIGURE 1. Schematic representation of the boundary conditions used in the calculations. 

where h(t) is determined by t3he integral constraint 

representing conservation of mass flux (in the Boussinesq approximation) over 
the lateral boundary as a whole. These conditions are illustrated in figure 1, and 
are further discussed below. 

The conditions on x = 0 merely express symmetry. Those on y = H may be 
thought of as modelling an inversion through which the plume is unable to 
penetrate; although the assumptions of zero tangential stress and zero heat flux 
a t  this level are chosen primarily for mathematical convenience they are con- 
sistent with our expectation that there will be insufficient transport of either heat 
or momentum across the inversion to cause significant effects on the flow near 
the source in the relatively short duration of most fires. Our assumption that the 
height of the inversion remains unaffected above the fire will normally be in 
error, although the effects near the fire due to any local arching of the inversion 
are likely to be quite small. The selection of lateral boundary conditions a t  x = L 
requires care as these must be capable of permitting free inflow and outflow of 
neutral or stably stratified fluid to and from the computational region. After 
some preliminary trials, we have found it satisfactory t o  impose horizontal flow 
with w(L, y )  = 0 over the whole height of the open boundary x = L;  from the 
continuity equation, this is equivalent to the Neumann condition &/ax = 0 a t  
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x = L for u. An immediate test of the degree of constraint introduced by 
requiring that the lateral inflow and outflow be horizontal is provided by the 
pressure-gradient fields, which for satisfactory lateral boundary conditions 
should be small in the upper and lower outer corners (where local buoyancy 
effects are very small). This has proved a convenient test, and has shown that a t  
higher values of the pseudo-Rayleigh number there is little need to relax the 
constraint of horizontal lateral flow, although at  lower pseudo-Rayleigh numbers 
i t  may be better to take the inclination of the streamlines constant across the 
lateral boundary. A gross integral constraint on u is needed since the condition 
on normal velocity is of Neumann type. This is provided by the requirement of 
gross mass conservation in the computational region, or in the current approxi- 
mation conservation of gross volume expressed by ( 7 ) ;  this equation can be used 
at each time step to determine the height h(t) which separates the lower inflow 
and the upper venting outflow, although a condition on the stream function is 
simpler to apply numerically (see $3.2). 

The condition T(L, y) = To for 0 < y < Iz(t), where u < 0, ensures that inflowing 
air has the temperature of the environment (for either To = constant or To(y) ) ;  
and the condition BT(L, y)/ax = 0 for h(t)  < y < H ,  where u 2 0, which in this 
approximation corresponds to a(pcuT)/Bx = 0 where c is the appropriate specific 
heat, ensures continuity of heat flux across the boundary in a locality where heat 
transport should be dominated by advection (or it may be regarded as ensuring 
that the thermal stratification of outgoing air is determined by the flow inside D).  
It is shown in $ 4  that the alternative condition BT(L,y)/iix = 0 for the inflow 
zone 0 < y < h(t) causes little change in the flow field at high Rayleigh number 
when advective transport dominates that due to diffusion, but there may be 
considerable differences at  lower pseudo-Rayleigh numbers when diffusion plays 
a more significant role. 

The flow is naturally driven by buoyancy forces and has no imposed velocity 
scale; hence the only dynamical parameter of the system is the pseudo-Rayleigh 
number 

Ra = g"--O13 K 2 ,  
T - T  TO I 

defined in terms of the single eddy diffusivity K .  Values of the ordinary Rayleigh 
number involving molecular diffusivities greatly exceed those of the pseudo- 
Rayleigh number. The eddy diffusivity K is taken as constant with values in the 
range 5-100m2s-l in our various cases, although our results are presented in 
terms of the pseudo-Rayleigh number. There are many unsatisfactory features in 
the use of eddy diffusivities, though we are unable to avoid their use at  present, 
and it is partly for this reason that we have attempted to explore the solutions 
over a range of Rayleigh numbers. 

3. Numerical procedure 
3.1. Finite-diflerence formulation 

The differential equations (3), (5) and (6) are replaced by finite-difference 
analogues in a manner similar to that described by Williams (1967) and Quon 
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(1972). First, the number of dependent variables is reduced by introducing 
a stream function 11. and the horizontal vorticity component 5, defined by 

and 

The system of equations (3)) (5) and (6) reduces after elimination of the pressure 
to the corresponding system 

where the convective parts of the total derivatives D{/Dt and DT/Dt have been 
expressed in Jacobian notation 

Once 5, T and 11. have been computed at a time step, the otzher dependent variables 
can easily be calculated when required for that time step. The velocity com- 
ponents u and v are obtained as spatial derivatives of the stream function; and 
Vp is found directly from the momentum equation ( 5 )  when the velocity and 
temperature fields are known. 

The variables 5, T and 11. are located at  the nodes of a uniform mesh in the 
x, y plane, the co-ordinates of the nodes at  any time level nAt (n = 0, 1, 2, ...) 
being (ih,jh), where i = 0,1 ,  ..., I, j = 0,1, . . ., J and h is the grid interval. Using 
the notation of Lilly (1964) the averaging operator Zx and the differencing 
operator 6,a are defined by 

z x  = $[a@ + i h )  + a(x-  pi)], 
&a = h-l[a(x + pi) - a(x - &)I. 

In  terms of these operators a suitable finite-differencing scheme replacing (8)-( 10) 
is 

&6+Jl(fi? !3 = ~ ~ l ~ o ~ ~ x ~ x + ~ r ~ , , ~ + ~ , , 5 1 , - l ~  

6,x 11.4- s,, 11. = c 7  

J l ( 1 1 . 3  0 = @J2(11., !3 + &(11.~,55”)z- 4 / ( @ 4 W I ,  

&Pt+ J2(11., T )  = +[6x,T+S,,T],-l, 

- - 
where 

J2(@, T )  = S,(F‘S,h’) - S , ( ! P ~ Y ) .  

The above scheme is centrally differenced in time and uses the Jacobian differ- 
ence operators devised by Arakawa (1966) to ensure that various integral con- 
straints on the convective terms of the differential equations are preserved in the 
finite-difference formulation. Finally, the diffusion terms are evaluated at  the 
preceding time level, as indicated by the subscript n- 1, to prevent computa- 
tional instability arising from these terms (Platzman 1963). 
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The numerical procedure consists of successively solving (8)-( 10) until the 
desired state of flow development, usually the steady state, has been reached. 
The vorticity and temperature finite-difference equations are straightforward 
evolut,ion equations but the stream-function and vorticity equations comprise 
a set of simultaneous linear equations for which an accurate method of solution 
is required, such as the trigonometric interpolation method used by Williams 
(1967). 

3.2. Initial and boudary  conditions 
In  terms of the new working variables, the initial conditions become 

t;, $ = O  
T, on y = O f o r O < x < l  

T = {  
To everywhere else 

In our calculations we have taken To = 300 OK and T, = 330 OK. The boundary 
conditions are now 

$, t;, 6,T = 0 at x = 0, 

$, 5,6,T = 0 a t  y = H ,  

$ = O ,  T = T ,  ( O < x < l ) ,  T = T o  ( l < x < L )  a t  y = O ,  

and the boundary value of t; at  y = 0 is found in a standard way (Williams 1967, 
p. 149) by applying a one-sided finite-difference approximation to the equation 
(10) relating the stream function to the vorticity at y = 0, and incorporatiiig the 
no-slip condition into this approximation. At the lateral boundary z = L, 
separate conditions apply in the upper region of outflow and in the lower region 
of inflow: (i) in the outflow (where 6u$ < 0), a,$, t;, 6,T = 0; (ii) in the inflow 
(where 6u$ > 0) ,  a,@ = 0, 5 is calculated from a one-sided (upstream) difference 
approximation to (lo), and either T = To or 6,T = 0. The gross condition of zero 
volume flux across the full height of the lateral boundary x = L is obtained 
from the condition 

$(L, 0) = @(L, H )  

on the stream function @(x, y ) .  

3.3.  Stability requirements 
The method described above is computationally stable when subject to the well- 
known (linear) time-step requirements on the advection and diffusion terms. 
The Boussinesq approximation filters out acoustic waves and the assumed 
constant height of the inversion removes the possibility of surface gravity 
waves. Therefore only internal gravity waves are present. Consequently the 
necessary condition for computational stability of this flow problem is 
At < min ( ( A x ) ~ / ~ v ,  Ax/(2Um,,)~), where the first expression is the diffusive 
stability requirement and the second, with U,,, the maximum velocity in the 
flow, is the Courant-Friedrichs-Lewy criterion. 
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Experiment 

1 
2 
3 
4 

5 
6 
7 
8 

9 
I0  
11 
12 

HIL 
Ra (HI7 = '8) 

2600 1 
1 
- 1 

1 
2 

650 1 
1 
.- 1 
2 
1 

72 1 
1 
t 
4 

TABLE 1 

Thermal condition on 
x = L , y  € h 

T = To 
= 0 

T = To 
T, = 0 
T = To 
T, = 0 
T = To 
7; = 0 
T = To 
Tr = 0 
T = To 
T, = 0 

3.4. Computational requirements 
The calculations were made on an IBM 360165 computer, where for a 49 x 49 grid 
the average time required for a single time step was about 3 s. The most lengthy 
calculations reached a quasi-steady state after approximately 4000 time steps. 

4. Results and discussion 
Twelve sets of calculations were performed corresponding to permutations of 

one of three values of the pseudo-Rayleigh number, one of two values of the 
aspect ratio HIL  (keeping HI1 constant) and one of two thermal conditions on 
inflowing fluid a t  the lateral boundary. These are summarized in table 1 and will 
henceforth be referred to by their experiment number. The discussion which 
follows is based wholly on steady-state flow fields. 

Although the calculations were carried out using a 49 x 49 grid for cases with 
H = L and a 49 x 97 grid for H = ZL, the solution fields are printed out at every 
third point on reduced 17 x 17 and 17 x 33 grids. The half heat source occupies 
ten grid points on the lower boundary, and HI1 is therefore $8 in all of the calcula- 
tions presented. This slightly awkward length ratio had not been intended, but 
serves as well to display the results as any other. 

I n  natural convection the fluid motion is generated wholly by the gross 
buoyancy field and consists of ascent of heated fluid and its replacement by 
cooler ambient fluid. However, buoyancy is strictly a local force which acts to 
modify the relative position of horizontally adjacent fluid elements a t  different 
temperatures or specific weights and is communicated between distant elements 
of fluid only through the dynamic pressure field; and it is this secondary pressure 
field that produces both the inflow of almost isothermal ambient air a t  lower 
levels and the venting outflow aloft. The customary subdivision into buoyancy 
and pressure-gradient terms 



10 

P- 

8- 

ZI  - 
91 - 

91 - 

\ 
\ 

f- 

\ 



h
 

I 

03
 
'I
 

04
 

7
 7 08 3
 - 16 

0 , \ \
+

 
\
 
\
 

\
 

b \ 

0 
I 

L 
0 

0 
F

IG
U

R
E

 
2.

 S
te

ad
y-

st
at

e f
lo

w
 fi

el
ds

 in
cl

ud
in

g 
(a

) s
tr

ea
m

li
ne

s;
 (

b)
 is

o-
p2

: cu
rv

es
; 

(c
) i

so
th

er
m

s;
 (

d
) i

so
-P

 cu
rv

es
, P

 =
 g

(T
 -
 T

,)
/T

,-
p;

la
p/

ii
y;

 f
or

 th
e 

pr
ot

ot
yp

e 
ca

lc
ul

at
io

n 
w

it
h 
Ra

 =
 26

00
, H

IL
 =

 1
, H

I1
 =

 9
 an

d 
w

it
h 

th
er

m
al

 c
on

di
tio

n 
T

 =
 T

o o
n 

th
e 

po
rt

io
n 

0 
< 

y 
< 

h 
of

 t
he

 la
te

ra
l b

ou
nd

ar
y 
x 

=
 L

. N
ot

e 
th

at
, 

in
 (

c)
, 

th
e 

is
ot

he
rm

s 
ar

e 
la

be
lle

d 
in

 "
K

 a
nd

 a
re

 n
ot

 e
qu

is
pa

ce
d.

 O
nl

y 
re

la
tiv

e 
va

lu
es

 a
nd

 n
ot

 a
bs

ol
ut

e 
m

ag
ni

tu
de

s 
ar

e 
as

cr
ib

ed
 to

 t
he

 s
tr

ea
m

lin
es

 (
a)

 an
d 

to
 th

e 
is

o-
p,

 (
b)

 an
d 

is
o-

P
 (

d
) c

ur
ve

s.
 A

ls
o 

in
 (

b)
 th

er
e 

is
 a

 c
el

l o
f 

la
rg

e 
po

si
tiv

e 
gr

ad
ie

nt
 j

us
t 

ab
ov

e 
th

e 
he

at
 s

ou
rc

e 
in

 w
hi

ch
 p

;'p
, 

at
ta

in
s 

a 
m

ax
im

um
 o

f 
ap

pr
ox

im
at

el
y 

35
; 

co
nt

ou
rs

 h
av

e 
no

t 
be

en
 d

ra
w

n 
in

 t
hi

s 
re

gi
on

 o
w

in
g 

to
 th

ei
r 

cl
os

e 
bu

nc
hi

ng
. 

A
nd

 in
 (

d
) t

he
 s

pa
ci

ng
 o

f 
th

e 
cl

os
ed

 r
eg

io
n 

of
 c

on
to

ur
s 

ju
st

 a
bo

ve
 a

nd
 t

o 
th

e 
ri

gh
t 

of
 t

he
 s

ou
rc

e 
pe

ri
m

et
er

 i
s 

on
e-

qu
ar

te
r 

of
 t

he
 s

pa
ci

ng
 e

ls
ew

he
re

 in
 t

hi
s 

fi
gu

re
. 



12 R. K .  Smith, B. R. Morton and L. M .  Leslie 

used in (5) is based on the constant reference temperature To and is purely formal. 
It is in fact no simple matter to separate the (local) buoyancy and dynamic 
pressure gradients in the vertical force per unit mass 

T - T  l ap  
To Po%/’ 

F = gPo--- 

and we shall not attempt to do so; however, the horizontal force per unit mass 
-pol aplax is pure dynamic pressure gradient. 

Figure 2 shows the streamlines, isotherms, contours of the horizontal dynamic 
pressure gradient (iso-pz curves) and contours of the vertical force F (iso-F 
curves) for experiment 1 (Ra = 2600, IilL = 1, T = To on 0 < y < h). The flow 
shows slight retardation above the outer parts of the lower boundary with weak 
upward tilting of the streamlines followed by a low-level sink-like ’ inflow 
t,owards the edges of the fire, a narrow convection column (or ‘fire plume’) above 
the source, and a region of venting outflow under the ‘inversion’ (figure 2 a ) .  The 
inflow is nearly isothermal with temperature To (figure 2c), showing that, at  
values of the pseudo-Rayleigh number as high as 2600, heat transfer is dominated 
by advection in the outer parts of the flow. The pattern of iso-p, contours 
(figure 2 b )  shows a region of strong positive gradient centred over the perimeter 
of the source and roughly one-third of the source width (i.e. j l )  in height. The 
neighbourhood a little above and to the right of the source perimeter is also a 
region of moderately strong and negative total force corresponding to the sink- 
like downflow towards the source (figure 2 d ) .  These force fields are responsible 
for driving the concentrated inward and slightly downward ‘ sink-like ’ flow above 
the source perimeter that in our view corresponds to the well-known ‘fire wind’. 

Above the central regions of the heat source the inflow of air must be deflected 
upwards into the fire plume, and in this neighbourhood figures 2 ( b )  and (d) show 
large negative horizontal pressure gradients and large positive values for the 
vertical force F .  Over the inner parts of the source the isotherms are rather flat 
a t  small heights with the result that in this region there is approximate reversed 
stagnation point flow withlittle local effect of buoyancy, and there must be a mean 
stagnation point with a pressure maximum a t  the centre of the source. Thus the 
relative contributions of buoyancy and pressure gradient to the total vertical 
force F vary appreciably as air moves in across the perimeter of the source and 
up into the fire plume. The downward flow of neutral air outside the fire perimeter 
is driven predominantly by the pressure gradient, with a maximum upward 
effect of buoyancy inside the perimeter and weak upward buoyancy locally 
assisting an upward driving pressure gradient above the inner regions of the 
source. 

At intermediate heights in the fire plume the horizontal (lateral) pressure 
gradients are very small (though the lateral pressure-gradient contribution in 
balance with the mean lateral turbulent transport of lateral momentum is 
neglected in this model as in most fire-plume models), and the vertical force is 
predominantly due to buoyancy calculated, rather more appropriately in this 
case, relative to the air temperature outside the fire plume (approximately To). 
Figure 3 (a) shows for experiment 1 the separate vertical profiles abobe the centre 
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H 

0 + 0 + - - 
FIGURE 3. Comparison of vertical profiles on the symmetry axis z = 0 of a buoyancy force 
g(T- To)/To and a vertical pressure-gradient force -p; lap/ay,  calculated relative to the 
initial hydrostatic fields To and p,, with the total vertical force P = g(T- T,)/T,-p;lap/ay. 
Close above the source the large ‘buoyancy’ force is almost in balance with a hydrostatic 
pressure field, neither of which have any great significance, but the total force P is 
significant. 

of the source (x = 0) of ‘ buoyancy calculated relative to To7 and ‘ vertical dynamic 
pressure gradient calculated relative to hydrostatic equilibrium a t  To ’) together 
with the net profile of vertical force F.  Although some help in understanding fire 
behaviour can be obtained from the ‘buoyancy’ and ‘pressure-gradient ’ profiles 
separately, the F profile provides most of the information. In  this case there is 
only a shallow central region above the immediate neighbourhood of the fire in 
which pressure gradients are small and the plume is driven predominantly by 
buoyancy according to the assumptions of entrainment models for turbulent jets 
or plumes. Above this is an upper region of large positive vertical pressure 
gradient and net negative F associated with a large negative horizontal pressure 
gradient; this is a region of strong vertical deceleration and large horizontal 
acceleration of air from the fire plume into an outward stream flowing under the 
inversion. Figure 3 ( b )  shows an equivalent set of profiles above the source centre 
for a case identical with experiment 1 except that both H and L have been 
doubled without changing the grid spacing or 1. A comparison of the lower regions 
of figures 3 (a) and (b)  in which the fire plume is generated and the upper regions 
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in which it is diverted into a venting outflow shows scarcely any change, but the 
central region in which the behaviour of the fire plume approaches that assumed 
in entrainment models has increased dramatically in vertical extent. Thus in 
figure 3 ( b )  (HI1 = v) the pressure gradients are quite small and an entrainment 
model would be acceptable in a central region extending through perhaps two- 
thirds of the total height W. However, even in the weakly heated system of our 
model it is clear that plume theories cannot be applied near the source, where the 
pressure-gradient forces are comparable with the buoyancy forces (or, again, 
near the inversion). Thus previous attempts to model fixed fires using the various 
entrainment models developed for unrestricted plumes have very limited rele- 
vance to flow behaviour in the lowest part of fire columns, where almost all the 
combustion takes place, Fire wind, which is clearly driven by pressure-gradient 
forces, must play the dominant role in introducing oxygen for combustion and is 
absent from the earlier plume entrainment models. These facts may in part 
account for the difficulties in satisfying the ‘fire link’ constraint in liquid-pool fire 
models that have been described by Smith (1969) and Blest (1973), though the 
combustion zone in a liquid-pool f i e  may be of considerably greater vertical 
extent than that of wood-fuel fires. 

The horizontal gradient of dynamic pressure and vertical component of 
force F are generally small elsewhere in the flow field, though there is a tendency 
in some calculations for increased values especially near the outer corners (L, 0) 
and (L, N) of the computational region. These are caused by constraints imposed 
on the flow by our selection of lateral boundary conditions and provide a measure 
of our success in securing open-boundary flow. In  the experiment illustrated our 
choice of horizontal motion (v = 0) across the lateral boundary appears to provide 
a reasonably satisfactory approximation a t  these Rayleigh numbers, but in other 
cases and especially a t  lower Ra values corner regions of pressure gradient are 
needed to adjust the streamline inclinations. Stable stratification also tends to 
produce horizontal flow with reduced disturbance to the pressure field. 

It seems reasonable to assume that the flow realization of our numerical 
experiment 1 yields useful information about what happens in the admittedly 
much more complicated case of a f ie.  The weakness of the pressure-gradient/ 
force field everywhere except possibly in the corners of the computational region 
indicates that there is very little dynamic pressure coupling between flow near 
the lateral boundary and the fire plume, and almost as little between the venting 
outflow under the inversion and the zone of f i e  wind and strong buoyant accelera- 
tion immediately above the source. Thus at  large Rayleigh numbers, when the 
outer flow is dominated by advection rather than diffusion, there should be little 
back-coupling between flow near the source and either the venting outflow or the 
effects of the nearby lateral boundary. Moreover, it may be seen from figure 2 (a )  
that the lateral inflow near the edge of the fire has the character of flow towards 
a sink rather than that of an inflowing boundary layer; this may be expected to 
reduce the control of vertical diffusion over the inward mass flux, and thereby 
limits errors due to the modelling of diffusion that might otherwise affect our 
estimate of the i d o w  which would in a real fire support the combustion. For 
these reasons we expect that the solutions presented in figures 2 (a)-(d) will give 
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a reasonable simulation of buoyantly accelerated motion above a fixed heat 
source in a rigid horizontal boundary, and will therefore incorporate the principal 
dynamical effects arising in the neighbourhood of a fixed fire, including the inflow 
over the fire perimeter. 

One obvious limitation of our model in relation to fire-induced air flow lies in 
our use of constant eddy diffusivities. Over a real fire we must expect large 
variations in turbulent intensity and hence in diffusivity between the various 
flow regions, including the convection column above the source where the density 
stratification is unstable, the sink-like lateral inflow of only weakly sheared air 
at  uniform temperature and the stably stratified venting outflow. However, 
although we may have grossly overestimated diffusion in the outflow and under- 
estimated it in the fire plume, this does not appear to have affected unduly the 
flow near the fire, to judge from the pressure-gradient or temperature fields. 
Moreover, the selection of a thermally insulating free-slip upper boundary condi- 
tion appears not to be a serious restriction on the model, since though in general 
there would be a non-zero flux of heat and momentum through an inversion 
resulting in progressive erosion with possible local changes in height, the typical 
time scales for significant inversion changes are of the order of hours whereas 
fixed fires of this kind seldom burn as long as an hour at high intensity. 

Our numerical experiment has at no stage been intended to model a fire 
directly, but it seems likely that our solutions may nevertheless yield insight into 
a number of aspects of fie-induced air flows. Thus the width of the fire plume, 
which may be judged most readily from the isotherm pattern as in figure 2 ( c ) ,  
appears to be geometrically constrained by the width of the source and changes 
little further in width with changing Rayleigh number once the pseudo-Rayleigh 
number is sufficiently large. We recall that the spread angle of a turbulent jet or 
plume is independent of the Reynolds (Rayleigh) number, provided that this is 
large enough for fully developed turbulent flow. Thus in our fire simulation an 
advective/diffusive balance is apparently achieved within the fire plume as the 
Rayleigh number is increased, but the outer flow becomes increasingly advective. 
Again, the fire wind is like a sink flow towards a sink within the heat source, and 
although there will undoubtedly be some effect of ground roughness in the outer 
ground boundary layer, this should not exercise a significant control over mass 
inflow and hence over combustion rates. 

Up to this stage our results have been discussed in terms of a single realization 
(with Ra = 2600, H / L  = 1, and T = 300°K in the inflow and Tz = 0 in the out- 
flow a t  the lateral boundary x = L). It remains for us to demonstrate that these 
results are not unduly and inappropriately influenced by the choice of parameter 
values, lateral boundary conditions or computational region. The dependence of 
the overall flow on this choice of conditions raises issues which may be relevant 
in the numerical simulation of other mesoscale geophysical flows. To keep the 
present paper within reasonable bounds we shall discuss these wider implications 
in a separate paper, and here restrict ourselves to a limited range of comparisons 
to show that the solution near the source is insensitive to the exact choice of 
conditions provided that these are suitably selected. 

The streamline patterns are broadly similar in all our numerical experiments, 
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especially near the source, where sink-like inflow and upward deflexion of the 
air stream into the fire plume are dominant features. However, one aspect of flow 
that does not appear in figure 2 (a)  is the tendency in some cases for the develop- 
ment of a weak region of closed streamlines outside the main fire plume and at 
middle heights. This tendency is more pronounced at smaller aspect ratios HIL 
(at fixed HII) and with the boundary condition T,(L, y) = 0 (y < h) rather than 
T(L,  y) = To (y < h),  but it decreases as the pseudo-Rayleigli number increases. 
The tendency to form standing eddies of this kind appears to be related to 
restrictions on the freedom of lateral flow, and may result from stable ambient 
stratification or possibly from topography. Such eddies combine with the sinlr- 
like inflow at lower levels to reinforce the downward and inward nature of flow 
into the ‘fire’, although the effect is relatively weak in the cases we have com- 
puted. This is the only indication in any of our numerical experiments that might 
be related to the downward and inward flowing jets of air reported by Palmer 
(1969, private communication) from a series of experiments on large fires near 
Montgomery Pass, Nevada. 

The effects of parameter values, lateral boundary conditions and computa- 
tional box size on the solutions are shown very clearly in the temperature fields, 
and these form the basis for the remaining discussion. 

Figures 4 ( a )  and ( b )  show a comparison of isotherm patterns with our two 
different thermal boundary conditions on the lateral inflow for pseudo-Rayleigh 
numbers of 2600 and 72 respectively. At the lower Rayleigh number there is 
a considerable difference between the two solutions; with the condition 
T(L,  y) = To (y < h) there is an extensive wedge of inflowing cold air at or near 
the ambient temperature To, whereas with the condition T,(L, y) = 0 the inflowing 
air is stably stratified with a roughly uniform vertical temperature gradient. The 
latter solution requires an appreciably longer computation time to reach equi- 
librium, and in spite of the fact that both were computed for a Rayleigh number 
Ra = 72 the details of the inflow might be regarded as convectively controlled 
when the inflow temperature is specified and diffusively controlled when a zero 
temperature gradient is specified. This difference arises in part because we have 
selected a computational region of fixed width for a flow which in principle must 
continue to develop outside our region and in part because of the two-dimensional 
nature of our problem. We shall discuss this question in more detail elsewhere, 
but for our present discussion of fire wind it is sufficient to note that for this 
problem at relatively low pseudo-Rayleigh numbers the lateral condition T = To 
on the inflowing air provides better modelling for a fire in an extensive environ- 
ment. At relatively high Rayleigh numbers, however, there is little difference 
between the solution fields as the outer flow is dominated by advective heat 
transfer in any case. Large fires correspond to high Rayleigh numbers and we are 
then free to choose either of the lateral thermal boundary conditions; where there 
is such a choice, we prefer the condition T(L, y) = To (0 < y < h). 

The dependence of solutions on the aspect ratio HIL  of the computational 
region is also shown clearly by a comparison of isotherm patterns. Figure 5 (a) 
shows a comparison of the isotherms for experiments 5 and 7, at a Rayleigh 
number 650 and with T(L,  y) = To in 0 < y < h; the isotherms for experiment 5, 
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is taken as T = To, and the aspect ratio HI1 is held fixed equal to y. 
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with HIL = 1, are shown by continuous curves and the inner part (x < L)  of those 
for experiment 7 ,  with H I L  = 3, by broken curves. Figure 5 ( b )  shows a similar 
comparison at a Rayleigh number of 72 of experiment 9, with H1L = 1 (con- 
tinuous curves), and experiment 11, with H / L  = & (broken curves). We prepared 
also isotherms for experiments 6 and 8, a t  a Rayleigh number of 650, but with the 
alternative lateral boundary condition T,(L, y )  = 0 (0 d y < h),  to establish the 
effect of varying the aspect ratio HIL. However, the difference was not appreci- 
ably greater than with the alternative lateral thermal condition (see figure 5 a )  
and there is no point in reproducing them here. Thus, it  may be seen that at  the 
smaller values of the pseudo-Rayleigh number there is a significant effect on the 
temperature field near the heat source due to  the size of computational region and 
considerable care should be taken in selection of lateral boundary conditions and 
computational region. At Ra = 2600, however, the temperature fields show so 
little difference in the neighbourhood of the fire that we can reasonably claim that 
the inner flow and temperature fields are independent of the box size and of the 
outer boundary, and we believe that our solution fields are representative of 
convection over a heat source a t  these larger pseudo-Rayleigh numbers. 
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